
ASA-TM'IIZO,
,_II,IL_:__ j-'"<.:,:i_:_i!:ii:_i!iiiiii_

RNS-87-003

System Wide Performance
for the Cray-2

Measurement

William T.C. Kramer

M_ager, High Speed Processors
Computational Seg_ces Branch

NAS Systems Division
NASA Ames Research Center
.... Moffett Field, CA 95014

(415) 694-4418

Much attention has been paid to individual program performance on supercomputers in
the past. This paper presents issues and techniques for analyzing system wide performance
and throughput for UNICOS on the Cray-2. A mixture of system utilities and custom software
will be discussed and examples shown as to what parameters are important to maximize
system throughput.

Introduction

One common justification for acquiring
supercomputers are problems which can
not done in a reasonable amount of time

on any normal computer. This has led to
many studies and articles emphasizing the
performance of individual programs on
supercomputers. Numerous articles have
contributed to improving methods for
coding algorithms and programs in order
to achieve impressive performance on
these maehines.

However, most of the results do little to

develop methods understanding overall
system-wide p e r refinance for
supercomputers. With the increase in
interactivity of supercomputers afforded

by UNICOS, maximizing single program
performance is no longer _ufficient to
ensure that the expensive and scarce
resource of the supercomputer is utilized
to its maximum potential.

Traditional supercomputer operating
systems have been improved to maximize
performance for the batch environment.
Much work has also been done for

traditional UNIX TM systems to improve the

system performance for interactive
computing. With UNICOS it is possible and,
indeed necessary, to combine these two
approaches to obtain the best perfor-
mance possible for the e n t i r e
supereomputer system.

The following is a discussion of
techniques used on the Cray-2 as NAS to
increase the system throughput. Es-
semiatly, this paper describes approaches
for solving the problems faced i n
managing a supercomputer facility using
a philosophy normally associated with

stznd_rd UNIX TM systems. That philosophy
is one of buHdir_g small simple tools and
combining the tools together in the most
effective manner.

The NAS System

The Numerical Aerodynamic Simulation

(NAS) system is designed to provide one of
the most advanced supercomputing
environments for a national user base of

scientists working primarily in the field
of computational fluid dynamics and
related disciplines. The goals of the NAS
system are:

"1) to provide a national computa-
tional capability available to NASA, the
Department of Defense (DOD) and other
government agencies, industry, and uni-
versities, as a necessary element in en-
suring continuing leadership in compu-
tational fluid dynamics and related disci-
plines;

2) to act as a pathfinder in ad-

vanced, large-scale, computer systems ca-
pability through systematic incorporation
of state-of-the-art improvements in com-
puter hardware and software technolo-
gies; and

3) to provide a strong research tool
for NASA's Office of Aeronautics and Space

Technology." 1

The NAS system began operation in
September 1985, with the arrival of the
first 256 Megaword (MW) Cray-2. The
supercomputer is combined with a
number of other systems, including
numerous Silicon Graphics IRIS 2500T and
3030 workstations, Amdahl 5860 systems,
and VAX 11/780 systems. All the systems
are connected using Network Systems
Corporation's Hyperehannel and all but
the Cray-2 have ethernet connections.

A design requirement of the NAS system
was to have a single, consistent user
interface, regardless of the underlying
hardware. The Cray-2 runs the UNICOS
oerrating system, the Amdahls run
Amdhal's UTS operating system, the Vaxes

run the 4.3 Berkeley Distribution of UNIX TM

and the IRIS workstations run GL/2-W3.5.

All these varieties of UNIX TM are based on

AT&T System V 2 with the addition of

TCP/IP networking 3 and Berkeley UNIX

extensions such as sockets 4. The NAS
Cray-2 was the first to UNICOS.

The goal of pathfinding in supercom-
puting dictates there be a minimum of
vendor dependent solutions since NAS
plans to always continue to move to the
most advanced machine as quickly as

possible. The use of UNIX TM across all our

computing systems and the TCP/IP net-
work allows great flexibility. For example,
NQS, the Network Queuing System
developed as NAS and now adapted by Cray
and other vendors is used across all system
instead of Cray Station. This approach
makes management of supercomputers
even more challenging.

Another implication of the use of UNIX TM

and standard networking is the high level
of interactive use of the Cray-2,
particularly for interactive graphical
analysis. The implementation of Silicon
Graphics Remote Graphics Library on the

Cray-2 5 allows the implementation of

programs such as the Real-Time

Interactive Particle Tracer, rip 6. Rip is a
distributed program that does graphics on
the IRIS workstations and the

computational fluid dynamics calculations
on the Cray-2.

The Cray-2 at NAS is named Navier after
the 18th century mathematician and fluid
dynamist, Louis M.H. Navier. It is a fully
configured system with 256 Megaword of
120 nano-second memory, 34 IBIS DD49
disk drives for a total of 40.8 Gigabytes
(GB), and four Hyperchannel connections.
As of this writing, a Cray-Tape-Channel
connection is installed and being placed
into production and a VME/ethernet
interface is being delivered. The
operating system is currently a field test
version of UNICOS 3.0, which was placed
into production on July 1, 1987. However,
much of the work described in this paper
was done prior to the arrival of UNICOS
3.0, which has improved functions for
gathering performance information.

Methods of Measuring Per-

formance

A number of performance measurement
techniques may be used to monitor system
efficiency. These techniques may be
classified in at least three categories;
ber_chmarking, usage analysis and
performance monitoring. Techniques in
all three categories are used at NAS and
will be commented on, with the focus of
this discussion on the latter two.

Benchmarking

Benchmarking is a method ¢rf evaluating
supercomputer systems during which
individual programs and collections of
programs are run and their performance
analyzed. The program performance is
compared to a pre-determined baseline
performance. The comparison yields the
relative performance of a system or
program compared to the baseline.

Benchmarking is an important activity at
NAS. A suite of benchmarking codes have

been developed and continue to be refined
to reflect the work load. These
benchmarks have been used in ac-

quisitions of computer equ:_pment and for
changes in hardware and software. The
suites combine commonly used application

programs with typical data sets such as
the NAS kernel algorithms which are
utilities in use by many of the at NAS

programs. 7 Other benchmarks apply to

system and network performance 8.

With respect to system management, the
benchmark suites are used for several

purposes. A set of shell scripts have been
developed to facilitate running these
benchmarks so the entire suite or subsets

of it may be run quickly and easily. The

scripts run the benchmark programs,
evaluate performance and record the re-
suits. In this way, it is possible to evaluate
changes in the system, whether it be a
new version of a compiler or a complete

new computer system.

Before any significant change in the
production system or compilers is made,
the benchmarking suites are run with the

new system and results give an
expectation of changes in performance
that may be expected as well as making it

possible to identify potential problems.

In a similar procedure, a list: of known
bugs: and ::the test: codes : demonstrating

new

these

tes_ eases are :run and a meas_r:e of the
improved : reliability isobtained.
Benchmarking allows ia generat:::f_ling of

confidence when a new release: of the sys-
tem software is put into production.

Usage Analysis

One of the most effective performance
measurement procedures at NAS is the
analysis of the system usage. It
represents a long term picture of system
performance as well as providing insight
into the how clients are using the system.

System usage data has several advantages
at NAS; The data is generally available
from UN!CQS, and is in a format similar to

other UNIX _ implementations. In

particular, system usage data: is recorded
in the file lusr/adm/pacct whenever a

process: terminates 9 and further usage in-
formation is stored in other files.

Reporting Usage

When the Cray-2 was first delivered to the
NAS, there was a clear need to record,

report and monitor the usage of the
system. While: no money is charged for
NAS usage, individual projects and classes
of users are: allocated Cray-2 CPU time
through a peer or management review
process. It ::was necessary to track and
accurately record the usage of system by
individual, project, and class.

Journal accounting software, ja, from AIM
Technology, Inc was first used to post

process and record standard UNIX TM

accounting data. This software was

extensivelymodified by the NAS staff for
running the Cray-2, to improve its
function and performance, tailor it to the
needs of NAS and incorporate new data
and features available in newer releases
of UNICOS. Currently, ja records and
reports 16 categories of usage for each
user every day. The categories include
CPU time, memory, I/O transfers and
requests and is separated into prime and
non-prime time. CPU time is further
separated into three categories for
interactive, batch and deferred batch, and
is broken down for multitasking usage.
Users and project leaders can query the
usage on-line through a single command.
An example of a request is shown in
Figure 1.

A number of usage reports are generated

weekly and monthly. Management gets a
weekly summary of usage for each user
and project, including cumulative
summaries. Figure 2 shows the summary
table for a single week by major user
classes. In this example, the interactive
use (defined to be processes with nice
values of 24 or less) is shown as
approximately 11%, and 17% during prime
time. This is slightly lower than the
overall yearly average of 15 to 20% of
interactive usage, when clients were de-

veloping their codes. Comparisons over
time of summary numbers such as these
point to shifts in the usage profile and
should lead to shifting system
management policies.

NQS Usage

Obviously, NQS batch processing is
important to NAS, a situation typical of
supercomputiag but not typical of

standard UNIX TM environments. There are

three major queue structures for the
Cray-2; normal queues, deferred queues
and a special queue. The normal queue, is
a piped queue for 8 client queues with
different limits. Jobs entering the pipe

queue navier on either the Cray-2 or any
major network nodes are feed into one of
the 8 client queues depending on the
limits the submitter specified. Jobs are
run as soon as possible. The defer queue is

a pipe queue for 2 client queues. Jobs in
the defer queue are run only when there
is not enough work in the normal queues
to keep the system busy. Different
charging rates are used since it may be
several days before a job is executed. The
special queue is used for jobs requiring
special treatment. This queue is used for
very large and long running jobs. Figure
3 is a table summarizing the NQS

parameters currently in use at NAS.

Modifications to NQS were made to record
the queue from which each process runs.
It then becomes possible to record and
report utilization by queue, as shown in
Figure 4. This table provides a calculated
value which is indicative of the time jobs
wait in the queue before starting com-

pared to the time it took to run jobs.

Ad Hoe Usage Analysis

Very often, questions arise which are not
answered by defined reports and charts,
but which do not require the creation of
new reports. Easy access to and flexible
analysis tools for accounting data allow
these questions to be quickly addressed.

An example of this type of analysis
occurred when the UNICOS 3.0 field test

starting in June, 1987. The question was
whether to allow the use on the Cray-2 of
full screen editors such as vi and a micro
version of emacs, since the addition
overhead of character mode I/O was

unknown. The suspect programs were
placed on the system and over a two week
period their usage was observed. Figure 5
shows the results of the analysis. For each
editor, the ratio of CPU time to I/O was

compared to the basic editor, ed. The
results show that editors with improved
functionality have a better CPU to I/O
ratio than on support systems. When the
additional cost of transferring files to and
from the other systems which allowed full
screen editing was considered, the
decision to provide full screen editors on
the Cray-2 was made. It is now up to our
users to balance the additional CPU cost,

charged against their allocations, with the
added function.

Usage Analysis Summary

The major point of this section is a
combination of a programs, such as ja and
a number of shell scripts, such as those
that extract the data from ja and format it

into the tables using UNIX TM utilities such
as tbl and troff, _implify the recording
and reporting of usage data. Very few
system modifications were made in order
to extract the data, and possibly more
important, the techniques and procedures

used are portable to other UNIXrMsystems.

Nonetheless, usage analysis has some
limitations. It does not allow a true

picture of the state of the system at any
moment in time. Typically, most
supercomputer applications execute for a
long time, in cases several hours. Since

UNIX_usage data is recorded only when a
process terminates, it is not possible to de-
duce what the system is doing at any
particular moment. This prevents the
usage data from being used to tune system
performance parameters directly.

Performance Monitoring

As noted above, usage analysis is not
sufficient for providing a complete
picture. Real-time performance
monitoring is also necessary for
managing a system to provide the best
service. The basic structure of these

procedures is to execute at set time
intervals, typically 5 or 10 minutes,
gather statistics, record a summation of
statistics and possibly modify system
parameters. Several examples of this type
of monitoring are provided.

Idle Time and Memory Usage

One of the major measures of system
performance used at NAS is the amount of
idle time the system accumulates. The
"nice value" priority scheduling of
UNICOS allows idle time to be kept very low

while system response to interactive jobs
remains good. There is always some idle
accumulated when the system is started,

before all the user level codes are started.

In general, idle time is kept below 3% on a
long term average and less than 1% on a
short term basis. On the other hand,

system performance, and particularly
larger interactive graphics programs, are
very sensitive to swapping. Since the
very large processes do not swap unless
they are expanding in memory, anytime
swapping occurs impacts the interactive
use of the system. A balance is needed to
give the proper performance to all users.

Initially, it was necessary to understand
when: idle time occurred and how it

related to system responsiveness. Memory
usage needed to be monitored evaluate
when the use of too much memory
degraded the service. Examples of the
graphs reporting the idle time and
memory usage used for this analysis are
shown in Figures 6 and 7.

Another piece of the puzzle, shown in
Figure 8, was to measure the load on the
system. The load average gives an
indication of system responsiveness by
showing how many processes are
competing for the CPU resource. Load

average is a UNIX TM measurement which is
a moving average of the number of

processes in the kernel's run queue I 0
(the kernel has several internal queues
which are distinct from NQS queues.)
There were also periodic tests of network
transfer rates to judge performance. All
these items were reviewed as system

management parameters were changed,
thus providing a check to insure the
changes improving the system.

NQS Queue Control

Ensuring the Cray-2 is utilized to the
maximum degree requires constant
monitoring and modification of
parameters. The trade off between
maximum CPU utilization, system wide
throughput and interactive response for
real-time graphics required automating
functions normally given to operators of
the system. With all other concerns,
human operators generally do not have
the time to quickly respond to Changes in

system behavior, particularly since they
do not have control over scheduling the
interactive usage of the system.

The decision was made to automate the
process of controlling how many and
which batch jobs are be allowed to run on
the system as much as possible.
Furthermore it was decided to automate
through the use of a shell script instead of
modifying NQS and other system utilities.
This decision had several distinct
advantages:

1) It did not require maintaining
source code modifications to CRI products,
and facilitates moving to new versions of
software (as shown by by moving UNICOS
3.0 within a week of arrival);

2) The development time is very
short;

3) Procedures can be maintained
and modified by a system administrator
instead of a system programmer; and

4) The solutions are portable to
other systems if necessary.

The script monitors the idle time and
memory usage of the system at frequent
intervals. Threshold limits for idle time

and memory, based on time of day, have
been developed over the past several
months. Idle time is calculated by
comparing the accumulated CPU time of
the 4 idle processes with the idle time
accumulated at the last interval. If idle

time is above the threshold level, the
script will increase the run limits on some
of the normal NQS queues. If there are no
jobs in the normal queues, the script then
starts jobs in the defer queue.

Memory is also a consideration for the
script. Initially, jobs were started
regardless of the idle time if the amount of
memory in use was below a relatively
high limit. This approach was modified
since the number of jobs in the system
become so many that they were no longer
completing in a reasonable time and
would adversely affect interactive usage.

The memory limits are now adjusted so
that while the processors remain totally
busy, the memory average is about 150MW
instead of 225 MW.

The script is undergoing continued
improvement, and other system
management scripts like this have been
added. A script to monitor users stacking
and running many jobs in a queue at one
time has enabled us to fairly and con-
sistently enforce the system policy which
limits the number of jobs a user can have
run in any queue with minimum effort.

Sar

UNICOS 3.0 provides a Cray-2

implementation of the standard UNIX TM

utility sar for system activity reporting.
Typically, sar is scheduled to run
periodically, generally with a crontab
entry and record system behavior which
later can be reported. Initial usage of sar
indicates it is a useful and accurate tool.

Results agree with data obtained using
locally developed scripts. For example,
recording idle time by tracking the idle
processes CPU time and with sar indicates
a good match between sar and our
previous methods of recording the same
information. Sat also reports data which
was not easily obtained previously, such
as the amount of CPU time spent in I/O
wait and in system overhead and statistics
for individual devices. In all, sat should

improve the monitoring of the system.

Monitoring Summary

It is necessary to monitor an interactive
supercomputer frequently and to modify
parameters to maximize performance.
Fortunately, much of this can be often
done with shell scripts, whose creation
and maintenance is generally simpler
than programs and modifications of
system utilities.

Conclusions

Managing a supercomputer to get the
maximum utilization has always been a
difficult task. The additional challenges

presented by the Cray-2 and the
interactivity of UNICOS further complicate
the task. At NAS, we have been dealing
with these problems for more than a year
while supporting a national user
community.

A wide range of tools are used to measure
system performance. These tools include
benchmarks which measure performance
of specific programs and in specific
environments in order to compare

performance in a formal manner.
Collection and of various system
usage data is another valuable component.
Usage data gives insight into particular

usage, and for long term trends. It has
also been used to develop policy and
determine the initial values for system

parameters. Finally, it is necessary to
monitor system behavior and
performance, frequently - on the order of
every few minutes to detect short term
changes in system usage and to modify

parameters.

Fortunately, UNICOS provides a great deal
of flexibility to accomplish these tasks,
making traditional approaches of complex
scheduling algorithms and system
modifications for the most part

unnecessary. The UNIX TM philosophy of

building small simple tools and using shell
scripts to combine those tools can be

adapted to effectively manage
supercomputers. This results in
implementing changes more quickly,
providing a better responsiveness and
more easily maintaining changes.

Acknowledgments

It is necessary to point out that the work
described here is the combined

contribution of many people, working for
the NASA, General Electric (the

Integration Support Contractor), Sterling
Software (the System Support Contractor)
and Cray Research. Not to go
unmentioned are the users of NAS, who
have contributed new and unique ideas to

our system management procedures.

1 Bailey, F. Ron: Status and Projections of
the NAS Program. Proceedings of a
Workshop on Supercomputing
Environments, NASA-Ames Research
Center, Moffett Field, CA, June 24-26, 1986.

2Kevorkian, D.E., ed.: System V

Interface Definition. Indianapolis, IN,
1985.

3Feinler, E.J., et.al., eds: DDN Protocol
Handbook. Vol 1, Defense Technical
Information Center, Alexandria, VA 1985.

4Laffler, S.J.: A 4.2BSD Interprocess
Communication Primer. Department of
Electrical Engineering and Computer
Science, University of California,
Berkeley, CA, 1983.

5Choi, Diana and Levit, Creon: An

Implementation of a Distributed
Interactive Graphics System in an
Supercomputer Environment,
Proceedings of the Second
International Conference on

Supercomputing, Vol 2, International
Supercomputing Institute, Inc. May, 1987. _

6Rogers, S, Merritt, F and Choi, D.:
RIP(Real-Time Interactive Particle
Tracer). A computer program. NASA Ames
Research Center, Moffett Field, CA 1986.

7Bailey, David H.: NAS Kernel Benchmark
Results. First International

Conference on Supercomputing
Systems, IEEE Computer Society, 1985, pp
341-345.

8initial and High Speed Processor 2
(HSP 2) Computer System Request
for Proposal. NASA Ames Research
Center, Moffett Field, CA April 1987.

9UNICOS System Administrator Guide

for Cray-2 Computer Systems. SG-
2019, Cray Research, Inc., 1987.

10Bach, Maurice J.:The Design of the
UNIX Operating System., Prentice-Hall,
Inc., 1986.

r

navier.kramer 31> ja
NASacct 3.3-> show kramer statement
Statement for kramer.npo.

Average disk use for kramer.npo:
Thu Oct 1 through Tue Oct 27
10011079 bytes per day.
_9552 1/2k blocks per day.
9776 lk blocks per day.

kramer, npo CPU use from Thursday. October 1 1987 at 00:00
7through Tuesday, October 27 1:98 at 16:45

Type of use Amount Rate SBUs
prime interactive cpu 2399.780829 0.017
nonprme interactive 23_9,8t7024 0.017
prime batch cpu secs
nonprime batch cpu
prime deferred queue
nor_ime deferred clue
prime kwo_d-r_nutes
nonprime kword-mins

40.00
38,66

0,000000 0.017 0.00
0.000000 0.017 0.00
0.000000 0.000 0.00
0,000_0 0,000 0,00

5643,5t:5823 0.000 0,00
4392.127594 0.000 0.00

prime bytes xferred 11588937792.007000 0,000 0.00
nonprime bytes xfrrd 14409445134,992900 0,000 0.00
prime _hyscl l/O reqs 189830,503125 0.000 O,00
nonprime phs I/O reqs 2_86,32.496875 0.000 0.00
count of processes 79542.000000 0.000 0.00
run-time sbu 0.000000 0.000 0.00
usertime w/1 proc 3027.179646 0.000 0.00
usertime w/2 procs 0.00C,0_3 0,000 0.00
user time w/3 procs 0.00(;_3C_30.000 0.00
user time w/4 procs 0.00000O 0.000 0.00

Total: 78.66 SBU

Total charge: 0.00 SBU

User: kramer
CPU use: 78 minutes and 38 seconds.

Average disk use for group: 9776 blocks.
NASacct 3,3->

Figure 1

Sample output from
program ja, showing

of usage for the

the accounting
a complete list

current month

Navier Resource Use Breakdown

Week Ending 09/27/87

Class

NASA_ARC

NASA_LaRC

NASA_LeRC

Other_NASA_

DOD

Commercial

University

PRGSUP

prime

nonprm

prime

nonprm

. prime

nonprm

prime

nonprm

prime

nonprm

prime

nonprm

prime

nonprm

prime

nonprm

prime

Interact. Batch dfrrd-q

minute8 minutes minutes

1110 3681 77

295 5179 1372

1028 5121 37

54 2184 974

6 1404 0

I 661 78

3 31 0

0 42 0

92 1752 177

16 t1_ _032

109848

82 :107_ i 0

41 _7_ I3

cpu ave slze FO

total core MW MWords k reqs

4868 3.159 15040 2156

6846 9.848 20429 1200

6186

3212

1410

740

34

1.499

7.022

10.171

11.188

12:987

17.376

3281 1815

670 441

320 51

78 12

40 15

42 19 2

2022 2.139 1383 454

371"1. 500 117
|

0 955

I154

334:

43 417 1924

253 ai_ o

2384

3,-128

3.249 512

6.527 189

4-286

7,136

0.2116

0.114

0,099

565

• •,57

186

46 t io
.

163 23 0

18118

19305

1977 175

29i6 207

2281 1142

9103 182

1.135 664

nonprm

7.

prime

noRprm

total

438 3 0

esoe ls##, SOl
9u 6soo

378l 24 ! 69 6696 346.15

0.lt3

2. 926

.@,lit

5.2s4

8463 4897

eS967 24590

34195 26365

60163 50955

Figure 2

Current NQS Queues

Queue Memory CPU Run Nice
MW Seconds Limit Value

Jobs/User

(Interactive) 20 600 20/24 2
Short 16 1,200 8 25 2

Medium 16 3,600 9 27 1

Long 16 7,200 9 28 1

Large 40 7,200 5 27 *

X]ong 40 14,400 5 27 *

Smalldebug 12 100 10 24 1

Bigdebug 125 300 1 24 *

Big .125 14,400 # 26 *

Deferss 16 2,700 2 28 1

Deferll 100 5,400 2 28 1

* Only one job per user should be running at a given time in

any one of these queues,

The Big queue will be active from 6 pm until 3 am PST.

While it is active, the run limit will initially be set to 3.

Queue

Priority

10

10

8

8

6

14

12

6

10

10

Figure 3

Navier NQS Utilization Report

For week ending 09/28/87

number cpu minutes turn around delay

Queue name o f jobs total median median minutes factor

big 27 655 4.5 60.0 13.2

bigdebug 48 29 O. 1 2.7 27.5

deferll 78 4238 72.7 286.3 3.9

deferss 162 3012 22.4 67.4 3.0

large 134 1989 2.2 80.0 36.3

long 143 4366 5.1 325.4 63.6

medium 251 4034 14.0 76.3 5.4

short 246 935 1.9 16.7 8.7

smalldebug 424 139 0.2 2.1 9.3

special 2 38 19.1 303.7 15.9

xlong 86 6220 9.4 481.1 51.3

total 1601 25655

'.ore: Time for abnormclll,q terminated proces.ses not inchlded in j ob._.)

Figure 4

Editor Cray-2 Vax 11/780

ed 1.0 1.0iiiii •

ex 2.1 2.6

vi

emacs

3.3 4.5

31.8 16.3

Figure 5
A comparison of CPU time to I/O for

several editors was made to determine

the overhead of character I/O.

* A version of micro-emacs ported by a user

! i!! :

i :

P
35

E
R 30

C 25
E
N 20

T 15

I 10

D 5
L

0E

DAILY AVERAGE PERCENT IDLE
FOR AUGUST

3.0 field test swapping
corrected

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

August

Figure 6
Daily average idle time

for the month of August

AVERAGE DALLYMEMORY USE
FOR AUGUST

250

M
E 200
G
A 150
W
O 100
R

D 50
S

0

3.0 field test swapping
problem corrected

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31

August

Figure 7
Daily average memory usage

for the month of August

Number
of Users

NAVIER
Oct 5 - Oct 11

Figure 8
50

35 i

3o : I I.It It t, II,

20

10

5

0

Monday Tuesday Wednesday Thursday Friday Saturday Sunday

Load

Average *

25

20

15

10

5

0

Monday Tuesday Wednesday Thursday Friday Saturday Sunday

Yl'hc .umlx:r c)f procc._,_._ ¢oml_limlg It)l" lhc (?P|JIs). aw:ragcd t)w:r 15 mimtlcs

